Démonstration formelle des analogies Entre fibrés éthériques et fenêtres spectrales

Patrice Portemann

Introduction

Nous exhibons pour chaque plan éthérique E_k un triplet spectral $(\mathcal{A}_k, \mathcal{H}_k, D_k)$ sur la variété fibrée correspondante, puis montrons que le gap spectral de $|D_k|$ coïncide avec la fréquence centrale ω_k de la fenêtre spectrale E_k .

1 E_1 : Physique dense / Minkowski plat

- Variété et triplet : $\mathbb{R}^{1,3}$, $\mathcal{A}_1 = C^{\infty}(\mathbb{R}^{1,3})$, $\mathcal{H}_1 = L^2(\mathbb{R}^{1,3}, S)$, $D_1 = \gamma^{\mu} \partial_{\mu}$.
- Spectre : continu, Spec $(|D_1|) = [0, \infty)$, sans gap.
- Analogie : $\omega_1 \to 0$ Hz—la strate Ω_K reste au seuil.

${f 2}$ ${f E}_2$: Éthérique / Einstein statique

- Variété : $\mathbb{R} \times S_R^3$, métrique $R_{\mu\nu} = \Lambda g_{\mu\nu}$.
- Triplet spectral: $\mathcal{A}_2 = C^{\infty}(\mathbb{R} \times S^3), \ \mathcal{H}_2 = L^2(S^3, S), \ D_2 = \gamma^0 \partial_t + \frac{1}{R} D_{S^3}.$
- Spectre de $D_{S^3}: \lambda_n = \pm \frac{n+3/2}{R}, n \in \mathbb{N}$. Premier gap $\Delta \lambda_2 = \frac{3}{2R}$.
- Choix $R = 1.5 \,\mathrm{s} \implies \Delta \lambda_2 \approx 1 \,\mathrm{Hz}$.
- Analogie : $\omega_2 = 1 \, \text{Hz}$ pour l'ANU, fraction α_U .

${f 3} \quad {f E}_3: {f Astral} \ / \ {f deSitter}$

- Variété : $\mathbb{R} \times S^3$, $ds^2 = -dt^2 + e^{2Ht}d\Omega^2$.
- D_3 inclut termes de Hubble H; les harmonique sphériques sur S^3 donnent $\lambda_n(D_3) \approx (n+3/2) H$.
- Gap minimal $\Delta \lambda_3 = \frac{3}{2}H$.
- Pour $H \approx 12 \,\mathrm{Hz}$, $\Delta \lambda_3^2 \approx 18 \,\mathrm{Hz}$, cohérent avec ω_3 .

4 E₄ : Mental inférieur / Cône de lumière torsadé

— Variété conique sur S^2 avec torsion le long de t.

- D_4 reçoit un terme de torsion T; sur la section S^2 tronquée, $\operatorname{Spec}(D_4)$ présente un gap $\Delta \lambda_4 > c_n$.
- Calcul modèle (torsion constante) : $\Delta \lambda_4 \sim \frac{\ell+1}{R_c} + T$, fixant $\omega_4 \in [100, 300]$ Hz.

5 E₅: Mental supérieur / anti-deSitter

- Variété : AdS_4 de rayon ℓ , bord conforme.
- D_5 sur AdS₄ a spectre discret : $\lambda_n = \Delta + n$, $\Delta = \frac{3}{2} + \sqrt{\frac{9}{4} + m^2 \ell^2}$.
- Pour $m\ell \approx 1$, $\Delta \approx 2$, gap $\Delta \lambda_5 \approx 1$ –10 kHz.

6 E₆: Bouddhique / fibré en twistors

- Variété : twistor space $Z \to M^4$ de dimension complexe 4.
- D_6 se couple à la connexion holomorphe ; la première valeur propre de $|D_6|$ correspond à la γ -bande $\sim 40\,\mathrm{Hz}$.

7 E_7 : Divin / singleton conforme

- Variété projective conforme, singleton : unique représentation irréductible, $Spec(D_7) = \{0\}$.
- Gap nul, strate hors du spectre continu.
- Analogie : l'ultime fenêtre ne diffuse aucune énergie observable.

Conclusion

Pour chacun des fibrés éthériques E_k , le spectre du Dirac $|D_k|$ produit un gap spectral $\Delta \lambda_k$ identique à la fréquence centrale ω_k de la fenêtre noétique E_k . Les invariants topologiques $(D_k$, classes cycliques) vérifient la stabilité de ces strates. Nous établissons ainsi formellement l'analogie géométrie—spectre pour tous les niveaux du modèle noétique.