Charge topologique des solitons et nombre d'enroulement avec inclusion explicite du champ noétique A(x)

Résumé

Nous démontrons que chaque soliton transporte une charge topologique définie par un nombre d'enroulement (winding number). Dans le formalisme noétique, cette charge est calculée à la fois par des intégrales topologiques, par des pairings en K-théorie/K-homologie, et par l'indice d'opérateurs de Dirac avec connexion noétique A(x). Nous incluons explicitement D_A , son champ de courbure F et les conditions de normalisation.

1 Cadre noétique et champ de jauge

Triplet spectral et connexion noétique

Le triplet spectral est $(\mathcal{A}, \mathcal{H}, D_A)$ avec

$$D_A = D + \gamma^{\mu} A_{\mu}(x), \qquad F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} + [A_{\mu}, A_{\nu}].$$

Ici, A(x) est la 1-forme de connexion (champ noétique), et F son tenseur de courbure. Les solitons apparaissent comme configurations à énergie finie dans ce cadre, protégées par des invariants topologiques.

2 Conditions d'énergie finie et compactification

Soit une configuration de champ $\phi(x)$ (globale ou de jauge couplée à A). La finitude d'énergie impose des conditions à l'infini :

$$\phi(x) \to \phi_{\infty} \in \mathcal{M}, \quad \partial \phi(x) \to 0, \quad F_{\mu\nu}(x) \to 0 \quad \text{quand } |x| \to \infty.$$

Ces conditions compactifient l'espace : $\mathbb{R}^d \cup \{\infty\} \simeq S^d$. La configuration définit alors une application continue

$$\Phi: S^d \longrightarrow \mathcal{M},$$

où \mathcal{M} est la variété des vides (par exemple $S^1, S^2, SU(2)$ ou un quotient G/H).

3 Nombre d'enroulement et normalisation

Le nombre d'enroulement (winding) est la classe d'homotopie de Φ , $[\Phi] \in \pi_d(\mathcal{M})$, souvent \mathbb{Z} . Il se calcule par des intégrales normalisées pour donner un entier $Q \in \mathbb{Z}$.

Cas 1D (kink ou champ de phase)

Pour $\theta: \mathbb{R} \to S^1$, on définit

$$Q_{1D} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \partial_x \theta(x) dx = \frac{1}{2\pi} [\theta(+\infty) - \theta(-\infty)] \in \mathbb{Z}.$$

Annotation : La normalisation $1/(2\pi)$ garantit que un tour complet de la phase donne Q=1.

Cas 2D (vortex abélien avec A)

Pour un champ complexe ϕ de norme finie couplé à un U(1) avec connexion A, la charge topologique est le flux magnétique :

$$Q_{\rm 2D} \ = \ \frac{1}{2\pi} \int_{\mathbb{R}^2} F_{12}(x) \, d^2x \ = \ \frac{1}{2\pi} \oint_{|x| \to \infty} A_{\ell} \, d\ell \ = \ \frac{1}{2\pi} \oint \nabla \arg \phi \cdot d\vec{\ell} \in \mathbb{Z}.$$

Annotation: La quantification de Dirac fixe le quantum de flux, assurant $Q \in \mathbb{Z}$.

Cas 3D (Skyrmion SU(2))

Pour $U: \mathbb{R}^3 \to SU(2)$ avec $U \to \mathbf{1}$ à l'infini,

$$Q_{3D} = \frac{1}{24\pi^2} \int d^3x \, \epsilon^{ijk} \operatorname{Tr} \left(U^{-1} \partial_i U \, U^{-1} \partial_j U \, U^{-1} \partial_k U \right) \in \mathbb{Z}.$$

Annotation: Le coefficient $1/(24\pi^2)$ est l'unique normalisation donnant des entiers (degré de l'application $S^3 \to S^3$).

4 Formulation de jauge et champ noétique A(x)

Monopole et défaut de phase

Dans 3D, avec champ scalaire $\hat{\phi}: \mathbb{R}^3 \to S^2$ et connexion A, la charge de monopole est

$$Q_{\text{mono}} = \frac{1}{4\pi} \int_{S_{\infty}^2} d\Omega \, \hat{\phi} \cdot \left(\partial \hat{\phi} \times \partial \hat{\phi} \right) = \frac{1}{4\pi} \int_{S_{\infty}^2} F.$$

Annotation : Le terme de droite identifie directement la charge au flux de F=dA sur la sphère à l'infini.

Pairing cyclique et classe Chern avec A

Dans le cas non abélien, la classe de Chern fournit l'entier via

$$Q = \frac{1}{8\pi^2} \int_{\mathbb{R}^4} \text{Tr}(F \wedge F) \in \mathbb{Z},$$

où $F = dA + A \wedge A$. Annotation: Ce nombre d'enroulement est celui des instantons SU(2) (nombre instantonique).

5 K-théorie, K-homologie et indice

Unitaires, projecteurs et winding

Un soliton défini par unitaire $u \in M_N(\mathcal{A})$ représente une classe $[u] \in K_1(\mathcal{A})$. La forme de winding en dimension 2n+1 est la composante de la Chern character

$$\operatorname{Ch}_{2n+1}(u) = \frac{(-1)^n n!}{(2n+1)!} \operatorname{Tr} ((u^{-1} du)^{2n+1}).$$

Le pairing avec la classe de K-homologie $[D_A]$ donne l'entier

$$Q = \langle \operatorname{Ch}_{2n+1}(u), [D_A] \rangle \in \mathbb{Z}.$$

Théorème de l'indice (avec A)

Pour l'opérateur adjoint $D_{A,u} = u^{-1}D_Au$, l'entier est l'indice

$$Q = (D_{A,u}^+) = \dim \ker D_{A,u}^+ - \dim \ker D_{A,u}^- \in \mathbb{Z}.$$

Annotation : La présence de A(x) dans D_A assure que l'indice encode la géométrie de jauge (champ noétique) et le winding du soliton.

6 Courant topologique et conservation

Il existe un courant topologique j_{top}^{μ} tel que

$$\partial_{\mu} j_{\text{top}}^{\mu} = 0, \qquad Q = \int d^d x \, j_{\text{top}}^0.$$

Annotation: La conservation est topologique : Q ne change que par des événements singuliers (création/annihilation soliton—anti-soliton).

7 Bornes d'énergie (BPS) et transport de charge

Dans les modèles Bogomolny, l'énergie est bornée par la charge :

$$E \ge c|Q|, \qquad E_{BPS} = c|Q|.$$

Annotation: Le soliton transporte la charge car celle-ci est liée à une densité locale invariante qui accompagne sa dynamique et ses interactions.

8 Compatibilité avec l'action spectrale

L'action spectrale

$$S = (f(D_A/\Lambda)) + \frac{1}{2}\langle J\psi, D_A\psi \rangle$$

contient, via $a_4(D_A^2)$, les termes de jauge

$$\int \operatorname{Tr}(F_{\mu\nu}F^{\mu\nu}) \sqrt{g} \, d^4x,$$

qui fixent la dynamique des solitons porteurs de winding Q. Les couplages Chern–Simons/Chern–Pontrya $\int \text{Tr}(F \wedge F)$ quantifient Q et relient directement la topologie de A(x) à l'entier mesuré dans les pairings.

Conclusion

- La finitude d'énergie compactifie l'espace et transforme les configurations solitoniques en applications $S^d \to \mathcal{M}$, dont la classe d'homotopie est un entier Q.
- Avec le champ noétique A(x), Q se lit comme flux (U(1)), degré (Skyrmion) ou nombre instantonique $(\int \text{Tr}(F \wedge F))$.
- En K-théorie/K-homologie, Q est le pairing $\langle \operatorname{Ch}(u), [D_A] \rangle$ et égal à un indice de Fredholm d'un Dirac couplé, garantissant quantification et robustesse.
- Les bornes BPS et le courant topologique établissent la conservation et le transport physique de la charge par le soliton.

Ainsi, « chaque soliton transporte une charge topologique définie par un nombre d'enroulement » est normalisé, justifié et démontré dans le formalisme noétique avec inclusion explicite du champ A(x).